Telegram Group & Telegram Channel
Recommender Systems with Generative Retrieval [2023] - наконец-то генеративные рекомендации?

Нечасто пишу сюда про статьи по рекомендациям - обычно в них мало интересного, но иногда мне попадается что-нибудь стоящее.

Итак, часто, если у вас есть мощная рекомендательная модель типа трансформера, то она получает на вход пару (юзер, документ) в каком-нибудь виде и предсказывает таргеты - лайки / покупки / другие. Таким образом, одно применение модели позволяет оценить качество одного кандидата.

Такую штуку нельзя прогнать для каждого документа в базе, и поэтому существуют предыдущие стадии ранжирования, работающие более тупым образом - например, у нас есть вектор пользователя, и мы пытаемся быстро найти несколько тысяч ближайших к нему документов-соседей.

Но к этому можно подойти и с другой стороны. Пусть каждый документ представлен вектором. Может ли какая-нибудь мощная модель гененировать вектор? Напрямую делать это нельзя - mse-лоссы вроде как плохо работают в таком сетапе.

В статье предлагают перейти к трансформерному декодеру. Чтобы дискретизовать эмбеддинги, нужно обучить что-то типа VQ-VAE, который умеет превращать эмбеддинг в небольшую последовательность дискретных чисел. Таким образом, данные становятся похожими на язык.

Вкратце о VQ-VAE - вместо того, чтобы обучать скрытое представление малой размерности, мы обучаем N эмбеддингов - сodebook. Получая входной вектор, мы находим ближайший к нему в таблице, его индекс и будет скрытым представлением. Декодированием будет просто взятие нужного вектора из сodebook. Это всё, конечно, недифференцируемо, но на такой случай есть старый добрый метод - забить хер и использовать Straight Through Estimator.

В статье используют RQ-VAE - много codebook-ов, после каждого из которых мы вычитаем из входа ближайший вектор из codebook-а и затем подаём в следующий. Таким образом, каждый айтем они кодируют набором из K чисел. Утверждается, что проблемы с декодированием набора чисел в номер документа несущественны.

Также там сравнивают с более простым методом дискретизации эмбеддингов. Согласно нему, мы проводим случайные гиперплоскости в пространстве эмбеддингов и записываем, с какой стороны от каждой из них оказался айтем. Получившиеся N бит - это и есть новый номер айтема. Метод в 100 раз проще, но по результатам хуже.

У нас с коллегами возникли вопросы по применению всей этой системы в реальном мире. Главный из них - что делать, если векторные представления айтемов меняются со временем? Переобучая / дообучая RQ-VAE на ходу, нам нужно пересоздавать все дискретные представления айтемов, и каждый раз заново перестраивать весь датасет. А это фу.

Лично я пока не решусь ставить на этот подход и заниматься внедрением у себя, однако, направление генеративных рекомендаций могут оказаться перспективными в долгосрочной перспективе.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/235
Create:
Last Update:

Recommender Systems with Generative Retrieval [2023] - наконец-то генеративные рекомендации?

Нечасто пишу сюда про статьи по рекомендациям - обычно в них мало интересного, но иногда мне попадается что-нибудь стоящее.

Итак, часто, если у вас есть мощная рекомендательная модель типа трансформера, то она получает на вход пару (юзер, документ) в каком-нибудь виде и предсказывает таргеты - лайки / покупки / другие. Таким образом, одно применение модели позволяет оценить качество одного кандидата.

Такую штуку нельзя прогнать для каждого документа в базе, и поэтому существуют предыдущие стадии ранжирования, работающие более тупым образом - например, у нас есть вектор пользователя, и мы пытаемся быстро найти несколько тысяч ближайших к нему документов-соседей.

Но к этому можно подойти и с другой стороны. Пусть каждый документ представлен вектором. Может ли какая-нибудь мощная модель гененировать вектор? Напрямую делать это нельзя - mse-лоссы вроде как плохо работают в таком сетапе.

В статье предлагают перейти к трансформерному декодеру. Чтобы дискретизовать эмбеддинги, нужно обучить что-то типа VQ-VAE, который умеет превращать эмбеддинг в небольшую последовательность дискретных чисел. Таким образом, данные становятся похожими на язык.

Вкратце о VQ-VAE - вместо того, чтобы обучать скрытое представление малой размерности, мы обучаем N эмбеддингов - сodebook. Получая входной вектор, мы находим ближайший к нему в таблице, его индекс и будет скрытым представлением. Декодированием будет просто взятие нужного вектора из сodebook. Это всё, конечно, недифференцируемо, но на такой случай есть старый добрый метод - забить хер и использовать Straight Through Estimator.

В статье используют RQ-VAE - много codebook-ов, после каждого из которых мы вычитаем из входа ближайший вектор из codebook-а и затем подаём в следующий. Таким образом, каждый айтем они кодируют набором из K чисел. Утверждается, что проблемы с декодированием набора чисел в номер документа несущественны.

Также там сравнивают с более простым методом дискретизации эмбеддингов. Согласно нему, мы проводим случайные гиперплоскости в пространстве эмбеддингов и записываем, с какой стороны от каждой из них оказался айтем. Получившиеся N бит - это и есть новый номер айтема. Метод в 100 раз проще, но по результатам хуже.

У нас с коллегами возникли вопросы по применению всей этой системы в реальном мире. Главный из них - что делать, если векторные представления айтемов меняются со временем? Переобучая / дообучая RQ-VAE на ходу, нам нужно пересоздавать все дискретные представления айтемов, и каждый раз заново перестраивать весь датасет. А это фу.

Лично я пока не решусь ставить на этот подход и заниматься внедрением у себя, однако, направление генеративных рекомендаций могут оказаться перспективными в долгосрочной перспективе.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/235

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Knowledge Accumulator from it


Telegram Knowledge Accumulator
FROM USA